轉貼 : CPU的製作過程詳解

uk_army

一般般會員
已加入
4/3/07
訊息
52
互動分數
0
點數
0
年齡
43
看完之后,才知道製造一顆cpu的工夫比想像的還要多和複雜;ranger;


現在市場上產品豐富,琳瑯滿目,當你使用著配置了最新款CPU的電腦在互聯網上縱橫馳騁,在各種程序應用之間操作自如的時候,有沒有興趣去想一想這個頭不大、功能不小的CPU是怎麼製作出來的呢。
在今天的半導體製造業中,計算機中央處理器無疑是受關注程度最高的領域,而這個領域中眾所周知的兩大巨頭,其所遵循的處理器架構均為x86,而另外一家號稱信息產業的藍色巨人的IBM,也擁有強大的處理器設計與製造能力,它們最先發明了應變矽技術,並在90納米的處理器製造工藝上走在最前列。在今天的文章中,我們將一步一步的為您講述中央處理器從一堆沙子到一個功能強大的集成電路芯片的全過程。
製造CPU的基本原料
如果問及CPU的原料是什麼,大家都會輕而易舉的給出答案—是矽。這是不假,但矽又來自哪裡呢?其實就是那些最不起眼的沙子。難以想像吧,價格昂貴,結構複雜,功能強大,充滿著神秘感的CPU竟然來自那根本一文不值的沙子。當然這中間必然要經歷一個複雜的製造過程才行。不過不是隨便抓一把沙子就可以做原料的,一定要精挑細選,從中提取出最最純淨的矽原料才行。試想一下,如果用那最最廉價而又儲量充足的原料做成CPU,那麼成品的質量會怎樣,你還能用上像現在這樣高性能的處理器嗎?
 除去矽之外,製造CPU還需要一種重要的材料就是金屬。目前為止,鋁已經成為製作處理器內部配件的主要金屬材料,而銅則逐漸被淘汰,這是有一些原因的,在目前的CPU工作電壓下,鋁的電遷移特性要明顯好於銅。所謂電遷移問題,就是指當大量電子流過一段導體時,導體物質原子受電子撞擊而離開原有位置,留下空位,空位過多則會導致導體連線斷開,而離開原位的原子停留在其它位置,會造成其它地方的短路從而影響芯片的邏輯功能,進而導致芯片無法使用。
這就是許多Northwood Pentium 4換上SNDS(北木暴畢綜合症)的原因,當發燒友們第一次給Northwood Pentium 4超頻就急於求成,大幅提高芯片電壓時,嚴重的電遷移問題導致了CPU的癱瘓。這就是intel首次嘗試銅互連技術的經歷,它顯然需要一些改進。不過另一方面講,應用銅互連技術可以減小芯片面積,同時由於銅導體的電阻更低,其上電流通過的速度也更快。
  除了這兩樣主要的材料之外,在芯片的設計過程中還需要一些種類的化學原料,它們起著不同的作用,這裡不再贅述。
CPU製造的準備階段
在必備原材料的採集工作完畢之後,這些原材料中的一部分需要進行一些預處理工作。而作為最主要的原料,矽的處理工作至關重要。首先,矽原料要進行化學提純,這一步驟使其達到可供半導體工業使用的原料級別。而為了使這些矽原料能夠滿足集成電路製造的加工需要,還必須將其整形,這一步是通過溶化矽原料,然後將液態矽注入大型高溫石英容器而完成的。
  而後,將原料進行高溫溶化。中學化學課上我們學到過,許多固體內部原子是晶體結構,矽也是如此。為了達到高性能處理器的要求,整塊矽原料必須高度純淨,及單晶矽。然後從高溫容器中採用旋轉拉伸的方式將矽原料取出,此時一個圓柱體的矽錠就產生了。從目前所使用的工藝來看,矽錠圓形橫截面的直徑為200 毫米。不過現在intel和其它一些公司已經開始使用300毫米直徑的矽錠了。在保留矽錠的各種特性不變的情況下增加橫截面的面積是具有相當的難度的,不過只要企業肯投入大批資金來研究,還是可以實現的。intel為研製和生產300毫米矽錠而建立的工廠耗費了大約35億美元,新技術的成功使得intel 可以製造複雜程度更高,功能更強大的集成電路芯片。而200毫米矽錠的工廠也耗費了15億美元。下面就從矽錠的切片開始介紹CPU的製造過程。

單晶矽錠

在製成矽錠並確保其是一個絕對的圓柱體之後,下一個步驟就是將這個圓柱體矽錠切片,切片越薄,用料越省,自然可以生產的處理器芯片就更多。切片還要鏡面精加工的處理來確保表面絕對光滑,之後檢查是否有扭曲或其它問題。這一步的質量檢驗尤為重要,它直接決定了成品CPU的質量。
新的切片中要摻入一些物質而使之成為真正的半導體材料,而後在其上刻劃代表著各種邏輯功能的晶體管電路。摻入的物質原子進入矽原子之間的空隙,彼此之間發生原子力的作用,從而使得矽原料具有半導體的特性。今天的半導體製造多選擇CMOS工藝(互補型金屬氧化物半導體)。其中互補一詞表示半導體中N型MOS 管和P型MOS管之間的交互作用。而N和P在電子工藝中分別代表負極和正極。多數情況下,切片被摻入化學物質而形成P型襯底,在其上刻劃的邏輯電路要遵循 nMOS電路的特性來設計,這種類型的晶體管空間利用率更高也更加節能。同時在多數情況下,必須儘量限制pMOS型晶體管的出現,因為在製造過程的後期,需要將N型材料植入P型襯底當中,而這一過程會導致pMOS管的形成。
在摻入化學物質的工作完成之後,標準的切片就完成了。然後將每一個切片放入高溫爐中加熱,通過控制加溫時間而使得切片表面生成一層二氧化矽膜。通過密切監測溫度,空氣成分和加溫時間,該二氧化矽層的厚度是可以控制的。在intel的90納米製造工藝中,門氧化物的寬度小到了驚人的5個原子厚度。這一層門電路也是晶體管門電路的一部分,晶體管門電路的作用是控制其間電子的流動,通過對門電壓的控制,電子的流動被嚴格控制,而不論輸入輸出端口電壓的大小。準備工作的最後一道工序是在二氧化矽層上覆蓋一個感光層。這一層物質用於同一層中的其它控制應用。這層物質在乾燥時具有很好的感光效果,而且在光刻蝕過程結束之後,能夠通過化學方法將其溶解併除去。
光刻蝕
這是目前的CPU製造過程當中工藝非常複雜的一個步驟,為什麼這麼說呢?光刻蝕過程就是使用一定波長的光在感光層中刻出相應的刻痕,由此改變該處材料的化學特性。這項技術對於所用光的波長要求極為嚴格,需要使用短波長的紫外線和大曲率的透鏡。刻蝕過程還會受到晶圓上的污點的影響。每一步刻蝕都是一個複雜而精細的過程。設計每一步過程的所需要的數據量都可以用10GB的單位來計量,而且製造每塊處理器所需要的刻蝕步驟都超過20步(每一步進行一層刻蝕)。而且每一層刻蝕的圖紙如果放大許多倍的話,可以和整個紐約市外加郊區範圍的地圖相比,甚至還要複雜,試想一下,把整個紐約地圖縮小到實際面積大小隻有100 個平方毫米的芯片上,那麼這個芯片的結構有多麼複雜,可想而知了吧。
當這些刻蝕工作全部完成之後,晶圓被翻轉過來。短波長光線透過石英模板上鏤空的刻痕照射到晶圓的感光層上,然後撤掉光線和模板。通過化學方法除去暴露在外邊的感光層物質,而二氧化矽馬上在陋空位置的下方生成。
摻雜
在殘留的感光層物質被去除之後,剩下的就是充滿的溝壑的二氧化矽層以及暴露出來的在該層下方的矽層。這一步之後,另一個二氧化矽層製作完成。然後,加入另一個帶有感光層的多晶矽層。多晶矽是門電路的另一種類型。由於此處使用到了金屬原料(因此稱作金屬氧化物半導體),多晶矽允許在晶體管隊列端口電壓起作用之前建立門電路。感光層同時還要被短波長光線透過掩模刻蝕。再經過一部刻蝕,所需的全部門電路就已經基本成型了。然後,要對暴露在外的矽層通過化學方式進行離子轟擊,此處的目的是生成N溝道或P溝道。這個摻雜過程創建了全部的晶體管及彼此間的電路連接,沒個晶體管都有輸入端和輸出端,兩端之間被稱作端口。
重複這一過程
  從這一步起,你將持續添加層級,加入一個二氧化矽層,然後光刻一次。重複這些步驟,然後就出現了一個多層立體架構,這就是你目前使用的處理器的萌芽狀態了。在每層之間採用金屬涂膜的技術進行層間的導電連接。今天的P4處理器採用了7層金屬連接,而Athlon64使用了9層,所使用的層數取決於最初的版圖設計,並不直接代表著最終產品的性能差異。

接下來的幾個星期就需要對晶圓進行一關接一關的測試,包括檢測晶圓的電學特性,看是否有邏輯錯誤,如果有,是在哪一層出現的等等。而後,晶圓上每一個出現問題的芯片單元將被單獨測試來確定該芯片有否特殊加工需要。

  而後,整片的晶圓被切割成一個個獨立的處理器芯片單元。在最初測試中,那些檢測不合格的單元將被遺棄。這些被切割下來的芯片單元將被採用某種方式進行封裝,這樣它就可以順利的插入某種接口規格的主板了。大多數intel和AMD的處理器都會被覆蓋一個散熱層。在處理器成品完成之後,還要進行全方位的芯片功能檢測。這一部會產生不同等級的產品,一些芯片的運行頻率相對較高,於是打上高頻率產品的名稱和編號,而那些運行頻率相對較低的芯片則加以改造,打上其它的低頻率型號。這就是不同市場定位的處理器。而還有一些處理器可能在芯片功能上有一些不足之處。比如它在緩存功能上有缺陷(這種缺陷足以導致絕大多數的CPU癱瘓),那麼它們就會被屏蔽掉一些緩存容量,降低了性能,當然也就降低了產品的售價,這就是Celeron和Sempron的由來。
在CPU的包裝過程完成之後,許多產品還要再進行一次測試來確保先前的製作過程無一疏漏,且產品完全遵照規格所述,沒有偏差。
  我們希望這篇文章能夠為一些對於CPU製作過程感興趣的人解答一些疑問。畢竟作者水平有限,不可能以專業的水平把製作過程完全展示給您,如果您有興趣繼續鑽研,建議您去閱讀一些有關集成電路製造的高級教材。
 
由板主最後編輯:

shuangyi

進階會員
已加入
4/1/05
訊息
1,205
互動分數
0
點數
36
如果能配上圖表解說
那就更完美了
 

george555

高級會員
已加入
5/14/05
訊息
769
互動分數
0
點數
16
不錯呀~~單單看完整篇文章,雖然有很多專業術語聽不懂,但起碼有一點點概念了~~~
 

810102

沉默會員
已加入
6/19/05
訊息
1,775
互動分數
0
點數
36
年齡
32
又學到了一些!!
不錯喔!:MMM:
 

junson

一般般會員
已加入
10/7/06
訊息
170
互動分數
0
點數
16
原來CPU的誕生是一門很深的學問~~
但看了這一篇慢慢的有一點概念~~
謝謝大大~~讓大家上了一門課了~~
 

Hyena

初級會員
已加入
12/23/06
訊息
2
互動分數
0
點數
0
年齡
33
真棒!!又學到了一點:MMM:
 

魔人阡

Eric
已加入
8/1/04
訊息
4,561
互動分數
0
點數
36
網站
造訪網站
如果能配上圖表解說
那就更完美了

通常那些圖表如果不是『機密文件』...也是一般人也看不懂的
話說回來...之前QK大有一篇晶片製作過程...是有照片的...可惜當時小弟沒能把它存下來;em44;
 

goto02042000

初級會員
已加入
8/1/06
訊息
16
互動分數
0
點數
0
哇。大大佩服你,者麼多字你都打出來。推你一個。雖然已經有點概念,還是謝謝你
 

carshop

一般般會員
已加入
2/18/07
訊息
119
互動分數
0
點數
0
20070427000244.jpg


來把一下
這是INTEL位於以色列的晶圓車間.工作人員約三千人
採長型格局.因為一片晶圓的製程需要經過27個以上這樣的車間
主要的過程就是樓主文章中的光刻.
而且每間車間的燈光顏色都不同
因為晶圓在每個階段對光線色溫的敏感度不同
注意這是無塵車間.所以每位工作人員都穿的跟太空人一樣
並且空氣循環並不像一班空調建築般從上吹入
而是走地板空調.所以地板是網狀摟空的.他的效能能在每四分鐘完全循環車間空氣一次

圖中工作人員手上拿的小盒子就是晶圓盒.每個晶圓盒可以放入25片晶圓
而這些晶圓並非全部都作為CPU

而是在製程最終階段後.送到美國.馬拉西亞的總部做成品等級的分類.
最優異的就是做最高階的CPU.次等的就作為中階與低階的CPU
其他的效能不是挺優但仍堪用的就做成晶片.
最爛的就銷毀.

大概是這樣摟
 

酷酷少

進階會員
已加入
4/27/07
訊息
264
互動分數
0
點數
0
感謝大大的分享.來這學到好多東西
 
▌延伸閱讀